Use of inverse modeling to evaluate CENTURY-predictions for soil carbon sequestration in US rain-fed corn production systems

نویسندگان

  • Hoyoung Kwon
  • Carmen M Ugarte
  • Stephen M Ogle
  • Stephen A Williams
  • Michelle M Wander
چکیده

We evaluated the accuracy and precision of the CENTURY soil organic matter model for predicting soil organic carbon (SOC) sequestration under rainfed corn-based cropping systems in the US. This was achieved by inversely modeling long-term SOC data obtained from 10 experimental sites where corn, soybean, or wheat were grown with a range of tillage, fertilization, and organic matter additions. Inverse modeling was accomplished using a surrogate model for CENTURY's SOC dynamics sub-model wherein mass balance and decomposition kinetics equations from CENTURY are coded and solved by using a nonlinear regression routine of a standard statistical software package. With this approach we generated statistics of CENTURY parameters that are associated with the effects of N fertilization and organic amendment on SOC decay, which are not as well quantified as those of tillage, and initial status of SOC. The results showed that the fit between simulated and observed SOC prior to inverse modeling (R2 = 0.41) can be improved to R2 = 0.84 mainly by increasing the rate of SOC decay up to 1.5 fold for the year in which N fertilizer application rates are over 200 kg N ha-1. We also observed positive relationships between C inputs and the rate of SOC decay, indicating that the structure of CENTURY, and therefore model accuracy, could be improved by representing SOC decay as Michaelis-Menten kinetics rather than first-order kinetics. Finally, calibration of initial status of SOC against observed levels allowed us to account for site history, confirming that values should be adjusted to account for soil condition during model initialization. Future research should apply this inverse modeling approach to explore how C input rates and N abundance interact to alter SOC decay rates using C inputs made in various forms over a wider range of rates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting the amount of sequestrated carbon in rangeland soil under the effect of soil sampling depth and height using the response surface methodology (RSM)

Background and objectives: Organic carbon is one of the important parameters to determine soil fertility, and production ability and is a mind index for showing soil quality, especially in dry and semi-dry lands. The rangelands are composed of about 50 % of the world's lands and have more than 33 % of carbon reservoirs on earth. Considering the ranges as the most important terrestrial ecosystem...

متن کامل

Effects of climate change on water use efficiency in rain-fed plants

Water use efficiency (WUE) reflects the coupling of the carbon and water cycles and is an effective integral trait for assessing the responses of vegetated ecosystems to climate change. In this study, field experiments were performed to examine leaf WUE (WUEleaf) in response to changes in CO2 concentration and other environmental variables, including soil moisture and air temperature. We al...

متن کامل

Investigation of rain fed perennial range plant instead of annual species for ecological control of soil erosion

One of the most important waysto decrease surface evorsion and increase forgie production is cultration of When we cultivate corns and we have not any good yields we can change the corn species with perennial range species. It causes to decrease surface erosion and increase forage production. The goal of this study is assessing of unsuccessful reasons in forage rain fed cultivation of Onobrychi...

متن کامل

Modelling of Greenhouse Gas Emissions from Wheat Production in Irrigated and Rain-Fed Systems in Khorasan Razavi Province, Iran

Agriculture has a key role in greenhouse gas emissions.  As such, the present study aimed to evaluate the greenhouse gas emissions from wheat production in irrigated and rain-fed systems. The primary data were collected from 116 wheat farmers. The results showed that the total greenhouse gas emissions from wheat production in irrigated and rain-fed systems were 637.8 and 65.12 kgCO2eq, respecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017